Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1393362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650886

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2022.872708.].

2.
Appl Environ Microbiol ; 90(2): e0155723, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299815

RESUMO

Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation in Cyanobacteria and some Proteobacteria using the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2 and HCO3- supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes.


Assuntos
Archaea , Bactérias , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Processos Autotróficos/genética , Carbono/metabolismo , Hidroxibutiratos/metabolismo , Dióxido de Carbono/metabolismo , Ciclo do Carbono/genética
3.
Angew Chem Int Ed Engl ; 63(4): e202312322, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38016929

RESUMO

Fluorine magnetic resonance imaging (19 F MRI) has emerged as an attractive alternative to conventional 1 H MRI due to enhanced specificity deriving from negligible background signal in this modality. We report a dual nanoparticle conjugate (DNC) platform as an aptamer-based sensor for use in 19 F MRI. DNC consists of core-shell nanoparticles with a liquid perfluorocarbon core and a mesoporous silica shell (19 F-MSNs), which give a robust 19 F MR signal, and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic quenchers. Due to the strong magnetic quenching effects of SPIONs, this platform is uniquely sensitive and functions with a low concentration of SPIONs (4 equivalents) relative to 19 F-MSNs. The probe functions as a "turn-on" sensor using target-induced dissociation of DNA aptamers. The thrombin binding aptamer was incorporated as a proof-of-concept (DNCThr ), and we demonstrate a significant increase in 19 F MR signal intensity when DNCThr is incubated with human α-thrombin. This proof-of-concept probe is highly versatile and can be adapted to sense ATP and kanamycin as well. Importantly, DNCThr generates a robust 19 F MRI "hot-spot" signal in response to thrombin in live mice, establishing this platform as a practical, versatile, and biologically relevant molecular imaging probe.


Assuntos
Nanopartículas , Trombina , Humanos , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro , Dióxido de Silício/química
4.
R Soc Open Sci ; 10(6): 230358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351494

RESUMO

The traditional story of the evolution of the horse (family Equidae) has been in large part about the evolution of their feet. How did modern horses come to have a single toe (digit III), with the hoof bearing a characteristic V-shaped keratinous frog on the sole, and what happened to the other digits? While it has long been known that the proximal portions of digits II and IV are retained as the splint bones, a recent hypothesis suggested that the distal portion of these digits have also been retained as part of the frog, drawing upon the famous Laetoli footprints of the tridactyl (three-toed) equid Hipparion as part of the evidence. We show here that, while there is good anatomical and embryological evidence for the proximal portions of all the accessory digits (i.e. I and V, as well as II and IV) being retained in the feet of modern horses, evidence is lacking for the retention of any distal portions of these digits. There is also good ichnological evidence that many tridactyl equids possessed a frog, and that the frog has been part of the equid foot for much of equid evolutionary history.

5.
Front Microbiol ; 13: 872708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668770

RESUMO

Carboxysomes, responsible for a substantial fraction of CO2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria, primarily from the phyla Proteobacteria and Cyanobacteria. Carboxysomes facilitate CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO2 concentration is variable or low, or O2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO2 concentrating mechanism, in which cells accumulate HCO3 - in the cytoplasm via active transport, HCO3 - enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO3 - to CO2, which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and ß-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts.

6.
J Bacteriol ; 203(23): e0037721, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34543103

RESUMO

In nature, concentrations of dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) can be low, and autotrophic organisms adapt with a variety of mechanisms to elevate intracellular DIC concentrations to enhance CO2 fixation. Such mechanisms have been well studied in Cyanobacteria, but much remains to be learned about their activity in other phyla. Novel multisubunit membrane-spanning complexes capable of elevating intracellular DIC were recently described in three species of bacteria. Homologs of these complexes are distributed among 17 phyla in Bacteria and Archaea and are predicted to consist of one, two, or three subunits. To determine whether DIC accumulation is a shared feature of these diverse complexes, seven of them, representative of organisms from four phyla, from a variety of habitats, and with three different subunit configurations, were chosen for study. A high-CO2-requiring, carbonic anhydrase-deficient (ΔyadF ΔcynT) strain of Escherichia coli Lemo21(DE3), which could be rescued via elevated intracellular DIC concentrations, was created for heterologous expression and characterization of the complexes. Expression of all seven complexes rescued the ability of E. coli Lemo21(DE3) ΔyadF ΔcynT to grow under low-CO2 conditions, and six of the seven generated measurably elevated intracellular DIC concentrations when their expression was induced. For complexes consisting of two or three subunits, all subunits were necessary for DIC accumulation. Isotopic disequilibrium experiments clarified that CO2 was the substrate for these complexes. In addition, the presence of an ionophore prevented the accumulation of intracellular DIC, suggesting that these complexes may couple proton potential to DIC accumulation. IMPORTANCE To facilitate the synthesis of biomass from CO2, autotrophic organisms use a variety of mechanisms to increase intracellular DIC concentrations. A novel type of multisubunit complex has recently been described, which has been shown to generate measurably elevated intracellular DIC concentrations in three species of bacteria, raising the question of whether these complexes share this capability across the 17 phyla of Bacteria and Archaea where they are found. This study shows that DIC accumulation is a trait shared by complexes with various subunit structures, from organisms with diverse physiologies and taxonomies, suggesting that this trait is universal among them. Successful expression in E. coli suggests the possibility of their expression in engineered organisms synthesizing compounds of industrial importance from CO2.


Assuntos
Processos Autotróficos/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Carbono/metabolismo , Bactérias/genética , Proteínas de Bactérias , Dióxido de Carbono/metabolismo , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem
7.
Appl Environ Microbiol ; 87(17): e0079421, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34190607

RESUMO

Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in "Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 µmol · h-1) or high (180 to 276 µmol · h-1) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ13C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2-fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.


Assuntos
Gammaproteobacteria/fisiologia , Poliquetos/microbiologia , Simbiose , Animais , Processos Autotróficos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Fontes Hidrotermais/microbiologia , Fontes Hidrotermais/parasitologia , Fotossíntese , Poliquetos/fisiologia , Sulfetos/metabolismo , Enxofre/metabolismo
8.
FEMS Microbiol Lett ; 368(6)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33791796

RESUMO

It is widely acknowledged that having experience conducting research is invaluable for undergraduate science students. Most undergraduate research is undertaken by students in a mentor's laboratory, but this limits the number of opportunities for students, as each laboratory can only take on a certain number of undergraduate researchers each semester. Additionally, it is also widely acknowledged that it is difficult for teachers to meet research goals while providing the best possible coursework for undergraduate students. Both of these bottlenecks can be circumvented via Classroom Undergraduate Research Experiences (CUREs), which integrate research into the curricula of structured undergraduate classes. Students enrolled in classes that include CUREs conduct research to address open-ended questions as part of their coursework. In this commentary, I describe the many ways in which CUREs are helpful for students and teachers, as well as considerations for designing successful CUREs. I provide several examples of CUREs from Microbial Physiology laboratory classes and Genomics classes that I have taught. Results from these CUREs have been successfully integrated into many peer-reviewed publications in which the students are co-authors, which has been a boon both to students' post-baccalaureate opportunities, as well as my research agenda.


Assuntos
Pesquisa , Ciência , Ensino , Currículo/tendências , Humanos , Pesquisa/estatística & dados numéricos , Ciência/educação , Ensino/estatística & dados numéricos , Ensino/tendências , Universidades/tendências , Adulto Jovem
9.
J Microbiol Methods ; 175: 105990, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32603756

RESUMO

Steps in the global nitrogen cycle are mainly catalyzed by microorganisms. Accordingly, the activities of these microorganisms affect the health and productivity of ecosystems. Their activities are also used in wastewater treatment systems to remove reactive nitrogen compounds and prevent eutrophication events triggered by nutrient discharges. Therefore, tracking the activities of these microorganisms can provide insights into the functioning of these systems. The presence and abundance of genes encoding nitrogen-metabolizing enzymes can be traced via polymerase chain reaction (PCR); however, this requires primers that are sensitive to a heterogenous gene pool yet specific enough to the target biomarker. The ever-expanding diversity of sequences available from databases includes many sequences relevant to nitrogen metabolism that match poorly with primers previously designed to track their presence and/or abundance. This includes genes encoding ammonia monooxygenase (AMO) of ammonia oxidizing microorganisms, nitrite oxidoreductase (NXR) of nitrite oxidizing bacteria, and nitrous oxide reductase (NOS) of denitrifying bacteria. Some primers are also not designed to generate the short (~200 nucleotides) amplicons required for real-time quantitative PCR (qPCR) and reverse-transcriptase qPCR (qRT-PCR). In this study, genes collected from the Integrated Microbial Genomes database (IMG) were aligned to design PCR primers that could capture more sequence diversity than is possible using existing primers. Primers were designed to target three clades of AMO (Betaproteobacteria, Chrenarchaeota, and complete ammonia oxidizing Nitrospira), periplasmic NXR and two clades of NOS (Proteobacteria and Bacteroidetes/Firmicutes). These primers successfully amplified target sequences from two wastewater treatment plants with biological nitrogen removal (one with simultaneous nitrification/denitrification and one with distinct anoxic/oxic zones) and estuary sediment. Nucleotide sequences of the amplicons retrieved homologs when used to query GenBank by BLAST. While convincingly identified as target sequences for these primer pairs, these amplicons were divergent from each other, and quite divergent (as low as 73%) from those present in GenBank, suggesting these primers are capable of capturing a diverse range of sequences. A direct comparison showed that primers designed here are better suited to environmental samples, such as wastewater treatment facilities, by producing a greater number of amplicons from the same sample than primers currently established in literature.


Assuntos
Bactérias , Primers do DNA/genética , Nitrogênio/metabolismo , Reação em Cadeia da Polimerase/métodos , Águas Residuárias/microbiologia , Microbiologia da Água , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/genética , Nitrificação , Nitrito Redutases/genética , Oxirredutases/genética
10.
FEMS Microbiol Lett ; 367(13)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589217

RESUMO

Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3- + CO32-) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. "Cyanobacteria" are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond "Cyanobacteria". Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among "Cyanobacteria", but also among members of "Proteobacteria" and "Actinobacteria".


Assuntos
Bactérias/genética , Dióxido de Carbono/metabolismo , Genes Bacterianos/genética , Variação Genética , Proteínas de Membrana Transportadoras/genética , Bactérias/metabolismo , Transporte Biológico/genética
11.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31628148

RESUMO

Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria ("Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the "Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis.IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the "Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Gammaproteobacteria/metabolismo , Hidrogênio/metabolismo , Fontes Hidrotermais , Poliquetos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Genes Bacterianos , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos/fisiologia , Hidrogenase/genética , Hidrogenase/metabolismo , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Poliquetos/metabolismo , Substâncias Redutoras/metabolismo , Simbiose
12.
Environ Microbiol ; 21(1): 72-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246324

RESUMO

RubisCO, the CO2 fixing enzyme of the Calvin-Benson-Bassham (CBB) cycle, is responsible for the majority of carbon fixation on Earth. RubisCO fixes 12 CO2 faster than 13 CO2 resulting in 13 C-depleted biomass, enabling the use of δ13 C values to trace CBB activity in contemporary and ancient environments. Enzymatic fractionation is expressed as an ε value, and is routinely used in modelling, for example, the global carbon cycle and climate change, and for interpreting trophic interactions. Although values for spinach RubisCO (ε = ~29‰) have routinely been used in such efforts, there are five different forms of RubisCO utilized by diverse photolithoautotrophs and chemolithoautotrophs and ε values, now known for four forms (IA, B, D and II), vary substantially with ε = 11‰ to 27‰. Given the importance of ε values in δ13 C evaluation, we measured enzymatic fractionation of the fifth form, form IC RubisCO, which is found widely in aquatic and terrestrial environments. Values were determined for two model organisms, the 'Proteobacteria' Ralstonia eutropha (ε = 19.0‰) and Rhodobacter sphaeroides (ε = 22.4‰). It is apparent from these measurements that all RubisCO forms measured to date discriminate less than commonly assumed based on spinach, and that enzyme ε values must be considered when interpreting and modelling variability of δ13 C values in nature.


Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/química , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Isótopos de Carbono/química , Cupriavidus necator/química , Cupriavidus necator/isolamento & purificação , Ecossistema , Fotossíntese , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/isolamento & purificação , Ribulose-Bifosfato Carboxilase/metabolismo , Microbiologia do Solo , Microbiologia da Água
13.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446552

RESUMO

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.


Assuntos
Dióxido de Carbono/metabolismo , Piscirickettsiaceae/isolamento & purificação , Piscirickettsiaceae/metabolismo , Sulfetos/metabolismo , Processos Autotróficos , Ciclo do Carbono , Dióxido de Carbono/análise , Ecossistema , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética
14.
Int J Syst Evol Microbiol ; 68(7): 2226-2239, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29851374

RESUMO

Thiothrix is the type genus of the Thiotrichaceae in the Thiotrichales of the Gammaproteobacteria, comprising nine species of sulfur-oxidising filamentous bacteria, which are variously autotrophic, heterotrophic or have mixed metabolic modes. Within the genus, four species show 16S rRNA gene identities lower the Yarza threshold for the rank of genus (94.5 %) - Thiothrix disciformis, Thiothrix flexilis, Thiothrix defluvii and Thiothrix eikelboomii - as they show no affiliation to extant genera, a polyphasic study was undertaken including biochemical, physiological and genomic properties and phylogeny based on the 16S rRNA gene (rrs), recombination protein A (RecA), polynucleotide nucleotidyltransferase (Pnp), translation initiation factor IF-2 (InfB), glyceraldehyde-3-phosphate dehydrogenase (GapA), glutaminyl-tRNA synthetase (GlnS), elongation factor EF-G (FusA) and concatamers of 53 ribosomal proteins encoded by rps, rpl and rpm operons, all of which support the reclassification of these species. We thus propose Thiolinea gen. nov. and Thiofilum gen. nov. for which the type species are Thiolinea disciformis gen. nov., comb. nov. and Thiofilum flexile gen. nov., comb. nov. We also propose that these genera are each circumscribed into novel families Thiolinaceae fam. nov. and Thiofilaceae fam. nov., and that Leucothrix and Cocleimonas are circumscribed into Leucotrichaceaefam. nov. and provide emended descriptions of Thiothrix and Thiotrichaceae.


Assuntos
Filogenia , Thiothrix/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Environ Microbiol ; 20(8): 2686-2708, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29521452

RESUMO

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.


Assuntos
Crescimento Quimioautotrófico , Genoma Bacteriano , Piscirickettsiaceae/genética , Ecossistema , Hidrogenase/genética , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo
17.
FEMS Microbiol Lett ; 364(14)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854673

RESUMO

The genome sequence of the obligate chemolithoautotroph Hydrogenovibrio crunogenus paradoxically predicts a complete oxidative citric acid cycle (CAC). This prediction was tested by multiple approaches including whole cell carbon assimilation to verify obligate autotrophy, phylogenetic analysis of CAC enzyme sequences and enzyme assays. Hydrogenovibrio crunogenus did not assimilate any of the organic compounds provided (acetate, succinate, glucose, yeast extract, tryptone). Enzyme activities confirmed that its CAC is mostly uncoupled from the NADH pool. 2-Oxoglutarate:ferredoxin oxidoreductase activity is absent, though pyruvate:ferredoxin oxidoreductase is present, indicating that sequence-based predictions of substrate for this oxidoreductase were incorrect, and that H. crunogenus may have an incomplete CAC. Though the H. crunogenus CAC genes encode uncommon enzymes, the taxonomic distribution of their top matches suggests that they were not horizontally acquired. Comparison of H. crunogenus CAC genes to those present in other 'Proteobacteria' reveals that H. crunogenus and other obligate autotrophs lack the functional redundancy for the steps of the CAC typical for facultative autotrophs and heterotrophs, providing another possible mechanism for obligate autotrophy.


Assuntos
Carbono/metabolismo , Ciclo do Ácido Cítrico , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Crescimento Quimioautotrófico , Glucose/metabolismo , Oxirredução , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética , Ácido Pirúvico/metabolismo
18.
Int J Syst Evol Microbiol ; 67(10): 4205-4209, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28920830

RESUMO

The genus Thiomicrorhabdus (Tmr) in the Piskirickettsiaceae in the Thiotrichales of the Gammaproteobacteria contains four species of sulfur-oxidising obligate chemolithoautotroph with validly published names, all previously classified as Thiomicrospira (Tms) species. Here we demonstrate that Thiomicrospira hydrogeniphila, a recently published hydrogen-utilising chemolithoautotroph closely related to Thiomicrorhabdus frisia (type species of Thiomicrorhabdus) should be classified as a member of the genus Thiomicrorhabdus and not Thiomicrospira, as Thiomicrorhabdus hydrogeniphila comb. nov., on the basis of comparative physiology and morphology as well as 16S rRNA (rrs) gene identity of Tms. hydrogeniphila MAS2T being closer to that of Tmr. frisia JB-A2T (99.1 %) than to Tms. pelophila DSM 1534T (90.5 %) or Hydrogenovibrio marinus MH-110T (94.1 %), and on the basis of the topology of 16S rRNA gene maximum likelihood trees, which clearly place Tms. hydrogeniphila within the genus Thiomicrorhabdus. It was also noted that thiosulfate-grown Thiomicrorhabdus spp. can be distinguished from Thiomicrospira spp. or Hydrogenovibrio spp. on the basis of the 3 dominant fatty acids (C16 : 1, C18 : 1 and C16 : 0), and from other Thiomicrorhabdus spp. on the basis of the fourth dominant fatty acid, which varies between the species of this genus - which could provide a useful diagnostic method. We provide an emended description of Thiomicrorhabdus (Boden R, Scott KM, Williams J, Russel S, Antonen K et al.Int J Syst Evol Microbiol 2017;67:1140-1151) to take into account the properties of Thiomicrorhabdus hydrogeniphila comb. nov.


Assuntos
Filogenia , Piscirickettsiaceae/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Hidrogênio/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo , Tiossulfatos/metabolismo
19.
Int J Syst Evol Microbiol ; 67(5): 1140-1151, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28581925

RESUMO

Thiomicrospira(Tms) species are small sulfur-oxidizing chemolithoautotrophic members of the Gammaproteobacteria. Whilst the type species Tms. pelophila and closely related Tms. thyasirae exhibit canonical spiral morphology under sub-optimal growth conditions, most species are vibrios or rods. The 16S rRNA gene diversity is vast, with identities as low as 91.6 % for Tms. pelophila versus Tms. frisia, for example. Thiomicrospira was examined with closely related genera Hydrogenovibrio and Thioalkalimicrobium and, to rationalize organisms on the basis of the 16S rRNA gene phylogeny, physiology and morphology, we reclassify Tms. kuenenii, Tms. crunogena, Tms. thermophila and Tms. halophila to Hydrogenovibrio kuenenii comb. nov., H. crunogenus corrig. comb. nov., H. thermophilus corrig. comb. nov. and H. halophilus corrig. comb. nov. We reclassify Tms. frisia, Tms. arctica, Tms. psychrophila and Tms. chilensis to Thiomicrorhabdus (Tmr) gen. nov., as Tmr. frisia comb. nov., Tmr. arctica comb. nov., Tmr. psychrophila comb. nov. and Tmr. chilensis comb. nov. - the type species of Thiomicrorhabdus is Tmr. frisia. We demonstrate that Thioalkalimicrobium species fall within the genus Thiomicrospira sensu stricto, thus reclassifying them as Tms. aerophila corrig. comb. nov., Tms. microaerophila corrig. comb. nov., Tms. cyclica corrig. comb. nov. and Tms. sibirica corrig. comb. nov. We provide emended descriptions of the genera Thiomicrospira and Hydrogenovibrio and of Tms. thyasirae.


Assuntos
Filogenia , Piscirickettsiaceae/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre , Bactérias Redutoras de Enxofre/classificação
20.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115547

RESUMO

Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.


Assuntos
Dióxido de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Carbono/metabolismo , Mutação , Filogenia , Piscirickettsiaceae/genética , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...